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An exact representation for the density-density response function is presented. 
This representation is a generalization of the result obtained in the mean 
field approximation and amounts to replacing the static, effective potential 
by one which is both wavenumber- and frequency-dependent. This potential 
possesses both a real and an imaginary part; the latter describes the collisional 
damping of collective modes. Analyticity and sum rule arguments are used 
to describe the basic properties of this complex potential. The formalism 
allows us to write an exact formula for the scattering function S(k, co) in 
which the basic unknown is the collisional damping function. Using a small 
portion of the recent experimental data on coherent neutron scattering in 
liquid argon, we are able to calculate S(k, ~) and other quantities of interest 
and to make comparisons with the rest of the data. 

KEY WORDS: Density-density response function; exact mean-field-type 
expression; van Hove scattering function; collisional damping function; 
Landau-type damping function. 

~. I N T R O D U C T I O N  

Some theoretical investigations of collective mot ions  in simple liquids (1-~ in  
the region of high frequencies and  short wavelengths have in part  been based 
on  approximate  expressions for the complex densi ty-densi ty  response 
funct ion  X(k, z). Some of these approximat ions  are in a sense mean  field 
approximat ions  (MFA)  since they can be derived from a linearized kinetic 

equat ion  for the single-particle dis t r ibut ion function.  The mean-field-type 
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approximation for x(k, z), to be denoted by XMF(k, 2"), is characterized by 
the expression 

XMF(k, Z) = Xo(k, z)/[1 4- ~b(k)Xo(k, z)] (1) 

where xo(k, z) is the density-density response function for an ideal gas. 
Here x(k, z) is defined in such a way that the limit z ~ oJ 4- i~ (where E is a 
positive infinitesimal) from above the real axis describes the linear response 
<p(k, w)) of the density to an external potential u(k, o J) according to 

<p(k, w)) = --x(k, co 4- ie)u(k, w) (2) 

The various approximations can be stated in terms of the expression used for 
the "effective" potential ~b(k) [or the corresponding space-dependent form 
~b(r)] as summarized in Table I. The MFA (1) is such that the first moment 
sum rule for the imaginary part of x(k, oJ 4- ie) [to be denoted by x"(k, co)] 
is automatically satisfied. However, only the approximation in the second 
row of Table I is consistent with the elastic sum rule for all k [cf. Eq. (8)]. 
None of the expressions in Table I is consistent with the third or higher 
moment sum rules for x"(k, o~) (cf. Section 2). 

In addition to discussions of collective motions, the MFA (1) has 
recently been used to investigate those density fluctuations which may be 
considered as precursors to freezing. (v~ 

As has been shown in Ref. 1 and is discussed further in Section 4.2 of 
this work, the scattering function SMF(k, ~) resulting from (1) shows well- 
defined side peaks for k values ranging from 0 to ~1.6  A -1 in liquid argon. 
However, recent experimental determinations of the scattering function 
S(k, o)) in liquid argon tS} by coherent neutron scattering in the region 
1 ~< k <~ 4.4~-1 and 0 ~< co ~< 16.1 • 1012 sec -1 do not reveal any side 
peaks. Comparison with the experimental results shows in fact the complete 
inadequacy of the MFA to describe even qualitatively the observed scattering 
intensity. The reason for this failure of the MFA lies in the fact that it only 
allows for Landau-type damping of the collective modes (see Section 4.2) 
and completely neglects the all-important collisional damping. 

In this paper we use an exact representation for x(k, z) which amounts 
to replacing the static, effective potential ~b(k) in (1) by a wavenumber- and 
frequency-dependent effective potential dp(k, z). This potential possesses both 
a real and an imaginary part; the latter describes the collisional damping. 
Here we do not try to derive the form of ~b(k, z) from a detailed microscopic 
equation of motion approach. Rather, we use analyticity and sum rule 
arguments to describe the basic properties of q~(k, z) and show that by 
making simple assumptions for its imaginary part, (~"(k, co), a correct 
quantitative description of the scattering function and other quantities of 
interest can be obtained. 
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At this point let us emphasize the basic difference between our ap- 
proach and that of Pathak and Singwi. (9~ These authors start from a formally 
exact expression of the form (1) in which xo(k, z) is replaced by a "screened" 
response function Xse(k, z). In their theory there are thus two unknown 
functions, Xse(k, z) and the effective potential ~b(k), whereas in our theory 
there is only one unknown, the complex function r z). By using an 
appropriate ansatz for Xse(k, z) together with sum rule arguments, Pathak 
and Singwi ~9~ have obtained good argeement with molecular dynamics 
calculations and the experimental results of SkSld et al/s~ Their theory 
satisfies the zeroth, second, and fourth frequency moment sum rules for 
S(k, co). In our approach these sum rules are built into the theory from the 
start. In principle our approach allows us also to be consistent with higher- 
order moment sum rules for S(k, co). With a particularly simple ansatz for 
qV'(k, co) we can in fact satisfy all frequency moments up to the sixth. In 
practice, however, the lack of numerical data on the sixth and higher moments 
has led us to an "inversion" of the problem in the sense that we use a small 
portion of the experimental data in conjunction with the theory to extract 
some quantities of interest for which there exist thus far no reliable estimates 
(Section 6). 

In Section 2 we review the basic relations, analytic properties, and sum 
rules connected with the response function x(k, z). This section also defines 
some key quantities used throughout the analysis. In Section 3 we discuss 
the basic analytic properties of the complex effective interaction r z) 
and the sum rules satisfied by its imaginary part, r co). Also given in 
Section 3 are some exact formulas relating the coherent scattering function 
S(k, co) (or the closely related spectral function X"(k, co)) to the function 
d/'(k, co). Section 4.1 reviews the earliest speculations concerning collective 
modes and the shape of the scattering function in classical liquids, while 
Section 4.2 discusses in considerable detail the MFA description of collective 
modes and Landau damping. 

In Section 5 we make contact with another exact representation for 
x(k, z), that of Kadanoff and Martin, 11~ in which the basic unknown is the 
complex damping or memory function D(k, z). We show that the real part 
of this damping function, D'(k, co), splits very naturally into a Landau-type 
part and a collisional part, involving r co). We also give in Section 5 an 
exact formula for the longitudinal viscosity in terms of d?"(k, co). 

In Section 6 we discuss two simple models for the collisional damping 
by introducing ansatz expressions for r co) [or, equivalently, q~(k, z)]. 
These ansatz expressions involve a quantity r(k) which can be interpreted 
as a viscous relaxation time. Rather than using theoretical values for this 
quantity (which we deem unreliable) we have chosen to determine r(k) from 
the experimental data for S(k, co = 0). The ~-(k) thus obtained shows con- 
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siderable structure; in particular, there are pronounced minima near those 
values of k where S(k) has maxima (cf. Fig. 5). Having thus obtained ~-(k), 
we have computed S(k, to) and tosS(k, to) from the exact formulas given in 
Section 3 for the region of k and to values investigated in the neutron scattering 
experiments of SkSld eta/. (s) The results are shown in Figures 6-11. 

In Section 6 we also try to answer quantitatively the question of whether 
the collective modes for k >~ 1 A -1 can be considered to be propagating or 
not by calculating the real and imaginary parts of the corresponding 
frequency. This calculation makes use of the formalism of Kadanoff and 
Martin a~ and a semiphenomenological description of damping introduced 
originally by Maxwell and Drude. The results for the complex collective 
mode frequency are given in Table II and plotted in Fig. 2. 

Section 7 contains a summary and discussion of the results obtained 
in this work and some ideas concerning the extension of the present method 
to other response functions of interest. Finally, in the Appendices A-C we 
discuss and amplify in detail some relevant points touched upon in the text. 

2. A N A L Y T I C  PROPERTIES A N D  S U M  RULES 

It is well known a~ that x(k, z) is analytic in the upper half of the complex 
z plane and is given in terms of the spectral function X"(k, to) by 

--oo 7T 

In fact, the above integral also serves to define x(k, z) in the lower plane so 
that x(k, z) is an analytic function everywhere off the real axis. x"(k, to) is 
related to van Hove's a2) coherent scattering function S(k, to), defined here 
as the Fourier transform of the space- and time-dependent density-density 
correlation function, 

fo S(k, to) = (l/p) f dr _odt{exp[--ik.  (r -- r') q- ito(t -- t')]} 

• [(p(r, t) o(r', t ' ) )  -- Oe] (4) 

by the equation (a~ 

S(k, to) = 2X"(k , to)h/p(1 -- e - ~ )  (5) 

which in the classical limit reads 

S(k, to) = (2/pfito) X"(k, to) (6) 

(8 = 1/kBT, where T is the temperature and kB is Boltzmann's constant). 
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Because of the relation (3) and because x"(k, co) has simpler properties, it is 
the more convenient function to deal with for our purposes. The function 
X"(k, co) is a real, odd function of co with the property (1~ wX"(k, co) >~ 0. 
From (3) we see that the static, wavenumber-dependent susceptibility 
x(k) is given by 

x(k) -- x(k, O) = f ~  do)_ X"(k,_ co) (7) 
--co Ti" CO 

which may be regarded as a sum rule on X"(k, co) (the so-called "elastic" 
sum rule). In the limit k --+ 0, x(k) is given by pZKr, or, equivalently, p/rnCr 2, 
where Kr and CT are the isothermal compressibility and sound velocity, 
respectively; the sum rule (7) is then referred to as the compressibility sum 
rule. 

In the classical limit, to which we shall restrict ourselves hereafter, it 
follows from (6) and (7) that x(k) is related to the static structure factor 
S(k) by 

5P (8) 
- -  tP c o )  = tps( ) - 1 - pc(h) 

where the last equality defines C(k), the Fourier transform of the direct 
correlation function. If the approximate expression (1) is to be consistent 
with (8), the effective potential ~b(k) must be taken as 

r  = - k ~ r C ( k )  = [1 - S( /O]/~pS(k)  = Co(k) (9) 

the notation being chosen for convenience later. [We have used the fact 
that Xo(k, 0) = tip.] This is the expression for r used in Ref. 1 and indicated 
in Table I. The application of Eq. (9) thus requires knowledge of the structure 
factor S(k). Alternatively, if by some means an expression for r as a 
functional of S(k) [or of the radial distribution function g(r)] has been 
obtained, (~) then Eq. (9) allows a self-consistent theoretical determination 
of S(k) [or g(r)], as stressed in Ref. 4. 

Very useful, exact relations are provided by the moment sum rules for 
X"(k, co) or S(k, co). Let us define the moments 

M~(k) = f ~ (dco/Tr) co~X"(k, co) = pfi -o~ (dco/2~r) co~+~S(k, w) (10) 

The moment sum rules which have so far been calculated are the following. 

1. Placzek(13): 

Ml(k ) - -  pk2/m (1 l) 
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2. de Gennes(14): 

c 
Ma(k) = (pk~/m)[3k2vr 2 %- (p/m) j dr g(r)(1 - -  cos k "  r)(l~ �9 V) 2 v(r)] 

(pk2/rn)<oj 2(k)) (12) 

where vr = (k~T/rn) ~/~ is the mean thermal  velocity. For  brevity we shall 
denote  the quanti ty <w~(k))~/2 by oJ~(k). 

3. Forster  et al.(~5): 

where 

Ms(k ) = (pk2/m) <w~r (13a) 

+ Vr2(p/rn) f dr g(r){15(k" V) 2 v(r) <~r 15(kvr) 4 

§ 6k(sin k "  r)(f~ �9 V) 3 v(r) § 2/3(1 --  cos k "  r)[V(f~ �9 Vv(r))] 2} 

%- (p~/m 2) f dr2 f dr3 g3(rz, r2,  r3)(1%- cos k "  r23 --  2 cos k -  rzz) 

• [V1(s " V~v(r12))] �9 [VI(s �9 Vlv(q3))] (13b) 

r12 -~- r I - -  r 2 ; r z a  ~--- r I - -  r 3 

In Eqs. (12), (13a), and (13b) the subscript I stands for longitudinal and the 
notation has been chosen to be in accord with that of Forster et al., (~5~ who 
defined the quantities <~o~(k)) by the equation 

M2,~+~(k) = M~(k)<w~'(k)} (14) 

Sometimes the moment  rules (10-14) are expressed in terms of  the quantities 
co'(k) defined by (la) 

~o~(k) = f f~  (&o/2zr)w~S(k, ~o)/f_]~ (dw/2zr)S(k, co) (15) 

and which are related to those defined in (14) by 

~2n(k~= [k2vr2/S(k)]<w~n-2(k)) (16) 

I t  should be pointed out  that  none of  the expressions for ~b(k) given in 
Table I is consistent with the third moment  sum rule (12) or any higher 
momen t  sum rule. In fact, with the approximate expression (1) for  the 
response funct ion it is impossible to satisfy the elastic sum rule (8) and third 
moment  sum rule (12) simultaneously. One can either satisfy the elastic sum 
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rule together with the f-sum rule (11) by making the choice (9), or one can 
satisfy the f-sum rule and the third moment sum rule by choosing the effective 
potential r of the form 

~b(k) = ~b~(k) = (1/k 2) f dr  g(r)(1 - -  cos k "  r ) (k"  V) 2 v(r) 

f0 = (4~r/k 2) dr rg(r)(v ' (r ){1  - -  [(sin k r ) / k r ] }  

- -  [v'(r) - -  rv"(r)] f ( k r ) )  (17) 

where 

1 sin k r  2(sin k r  - -  k r  cos k r )  
f ( k r )  - -  3 k r  q- (kr) a 

20 

18 
16, 

14 I 

12. 

10 I4,6.8 1 ~ [ 

2. ~ .~ ,  
o ~ ~--~ 

1.0 2.0 3.0 4"~ C ~:0] 6.0 7.0 
Fig. 1. Plot of the effective potentials p/3r 
(curve A) and p/3r (curve B). Curve C represents 
p/~r divided by ten. The curves have been 
obtained from Rahman's ~m calculations for liquid 
argon. 
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and the notation r has been introduced for later purposes. If one tried 
to satisfy simultaneously (8) and (12) [in addition to (11)] by equating the 
expressions (9) and (17), the resulting integral equations for g(r) would 
result in a value for g(r) which is negative divergent at the origin. The fact 
that the potentials r and r differ greatly can be seen in Fig. 1, where 
we plot the effective potentials (9) and (17) for liquid argon (T = 76~ and 
mass density prn = 1.407 g/cm 3) as obtained from Rahman's molecular 
dynamics calculations, m) 

Plots for some of the other effective potentials given in Table I can be 
found in Ref. 2. 

The statements leading to (17) can easily be verified by making use of the 
asymptotic expansions for x(k, z) and X-~(k, z) for large z. From (3) and (I(3) 
one finds for large z 

_ _ _ _ (  Ma/M1 , Ms~M1 ) x(k, z) ~-- M1 1 + - -  ~- + "" (18) 
Z 2 Z 2 Z 4 

1 Ma (Ma/MO 2 -- (MJMO + +. . ]  
z ~ 

The large-z expansions of xo(k, z) and Xol(k, z) are obtained from (18) and 
(19) by replacing the moments Mn(k) by the corresponding noninteracting 
values M(~~ [given by Eqs. (11)-(13) with v(r) = 0]. 

3. A N  E X A C T  R E P R E S E N T A T I O N  FOR x ( k , z )  A N D  x'(k,~) 
Instead of the approximate expression (1), we shall consider an exact 

representation for x(k, z) of the form 

x(k, z) = xo(k, z)/[1 + r z)xo(k, z)] (20) 

or, equivalently, 

x l(k, z) = x; l (k ,  z) + r z) (21) 

This equation has the form of the Dyson equation well known in the theory 
of Green's functions. {1G,17) The function r z) may be considered an 
effective frequency- and wavenumber-dependent interaction, for the moment 
(21) may simply be regarded as the definition of r z). In Appendix A we 
discuss an equivalent space-time form for the representation (20) in terms of an 
exact ansatz for the equation of motion of the one-particle distribution 
function. 

Basically, there exist three ways of determining r z): (a) the equation 
of motion method, (b) the method of diagrams, and (c) the use of sum rule 
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arguments. The simplest example for (a) is the linearized kinetic equation (5~ 
(or Vlasov equation) which leads to the frequency-independent form r 
(see the discussion in Appendix A). General methods of the types (a) and (b) 
have been explored and developed to a considerable extent recently by 
Forster and Martin ~1~ and Mazenko ~ ,  using the quantum mechanical 
method of Green's functions. In this section we use the simpler and more 
pedestrian sum rule arguments to describe the basic properties which the 
effective interaction r z) must satisfy. 

As will be shown explicitly below, the function r z) is linked to the 
scattering function S(k ,  co) so that it may be possible to gain considerable 
information about the dynamic, frequency- and wavenumber-dependent 
interaction from light scattering and coherent neutron scattering experiments 
[cf. Eq. (40)]. Since (20) is an exact representation for the density response 
function, it follows that r z) must contain, in principle, all the information 
about hydrodynamic modes involving density fluctuations and associated 
transport coefficients. This is further discussed in Section 5. Another feature 
worth pointing out here is that the representation (20) ensures that the 
scattering function will have the correct free-particle behavior in the limit 
of large k, or when the interaction is switched off. This is not automatically 
the case with some other representations, as discussed in Sections 5 and 6. 

From the fact that X-~(k, z)  and XoZ(k, z) are analytic functions of z off 
the real axis, a~ it follows that the same must be true of r z). From (19) 
and (21) it follows that for large z, r z) has the expansion 

where 

r  z)  = r  - [r ~] + O(1/z') (22) 

d?~(k) ~ ~(k ,  oo) = [1/Mle(k)l[M3(k) --  M3(~ (23) 

is given explicitly by the expression (17), and 

1 M32(k) --  [M~O)(k)] ~ Ms(k)  --  M~~ 

_ m [(oa a(k)} _ (co Z(k)}Z _ 6(kvr)4] (24) pk 2 

On the other hand, for z -- 0 we must have from (21) and (8) 

r ~ r O) -- x - l ( k ,  O) --  Xol(k, 0) 

= (1 /p f i ) { [1 /S (k ) ] -  1} (25) 

which is the expression given by (9). The functions p~d?o(k) and pl~r 
have been plotted in Fig. 1. 
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Because q~(k, z) --  q~oo(k) is analytic off the real axis and vanishes for  
large z as 1/z 2, we may write a spectral representation 

o o  7J" 

where qV(k, co) is a real, odd function of  co given by 

q~"(k, co) = (1/2i)[q6(k, co q- ie) --  qf(k, co --  ie)] (27) 

F rom (26) follows immediately the sum rule 

~bo(k) - -  ~boo(k) = (~o &o_ ~b"(k,_ co) (28) 
d - - o o  33" c o  

In Appendix B it is shown that  for  all values of  k 

q~o(k) - -  ~b~(k) ~ 0 (29) 

By compar ing (22) with the large-z expansion of  (26) we obtain the first 
moment  sum rule for  qV(k, co): 

q~l(k) = (dco/~r) co6"(k, co) (30) 
- o o  

Higher-order  moment  sum rules for  d?"(k, co) can, o f  course, be obtained 
in terms of  the moments  of  X"(k, co). The real par t  of  the effective interaction, 
to be denoted by ~b'(k, co), is related to the imaginary part,  c~"(k, co), by a 
Kramer s -Kron ig  relation: 

co)- = e V dco, @ ,  co,) (31) 
,2oo_ "~" CO -- CO 

where P denotes the principal value integral. 
F rom (20) the spectral function X"(k, co) is found to be given by 

Xo --  r 2 § (Xo) 2] (32) 
x"(~, co) = [i + r - r ~ + [r + 4 % ]  2 

and the real part, x'(k, co), of  the complex response function x(k, co -5 ie) is 

: P 
X"(k, w')  

--oo ~ c o l  - -  CO 

Xo' + 4'[(xo') 2 + (XoY] = , , ,, ,,3 ,, , (33) 
[1 + 4 Xo - 4 Xo] + [~ Xo + 4'XoP 
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In (32) and (33), all the arguments of the functions on the right are k, c~. 
The functions )Co(k, ~o) and Xo'(k, oJ) are the corresponding free-particle 
functions given by 

Xg(k, oa) = pS(rc/2)l/2(co/kvr) exp(--coZ/2k2vr 2) 

Xo'(k, (o) = pl3[1 -- 2xF(x)] 
(34) 

x = o , / ~ / ~ k v r  =- ( ~ , / k ) ( l m S ) l / ~ ,  F(x) = exp (--x 2) dt exp (t 2) 

The function F(x) is known as Dawson's integral and has been tabulated 
in the literature. (2~ The free-particle density response function x0(k, z) in 
compact notation is given by 

where 

Xo(k, z) = pfl[1 + V/~-(z/k)(�89 1/~ W((z/k)(lrnfi)l/2)] (35a) 

f f ~  exp (-- t  2) W ( z )  = ~ dt exp( - - t  ~ ) _  z dt 7~ 2 ~ ~ (35b) 
_| 7 7 - - 7  ,~ o~ 

is analytic in z off the real axis. A derivation of the above expressions for the 
free-particle response function can be found in Appendix A. 

We will shortly make use of the asymptotic expansion for Xo'(k, ~o) for 
large values of the ratio x. In this limit one has 

I1 + 3 is ] 
- 2x  ~ ~ + ~-~i + " " ;  

x>>l 

Pk2 [1 q- 3 k~vr~ (k2vr2 ~ 
rnco2 ~ T -  + 15 \ ~ - - 1  + "..] ; oJ ~ kvr (36) 

Since r co) is given in terms of r co) by (31), the calculation of 
the spectral function x'(k, oJ) is reduced to the problem of determining the 
wavenumber- and frequency-dependent function r co). Being an exact 
representation for the spectral function, Eq. (32) must provide (at least in 
principle) the correct description of phenomena in the entire region of 
frequencies and wave numbers. In particular, for small values of its argu- 
ments k and ~o, the function r w) must contain a description of the 
hydrodynamic modes involving density oscillations. 

The exact expression for the scattering function S(k, o J) is obtained 
from Eqs. (6) and (32). Because of what has been said above, the basic 
unknown function entering S(k, oJ) is d?"(k, ~) [assuming that r or r 
has been determined from a knowledge ofg(r) and v(r)]. In Section 6 we shall 
use these facts in a calculation of S(k, co) using appropriate ansatz functions 
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for r co). Let us note here the exact expression for the function S(k, co =0) ,  
which is essentially the intensity of radiation scattered elastically by the 
system. From Eqs. (6), (32), and (25) one finds 

F 

s ( k ,  co = o) = s~ (k )  ! 
kVr k 

2Off lim~0 r co) ] (37) 

This equation will prove very useful in the discussion of Section 6. Various 
approximate expressions for S(k, co = 0) are summarized in Ref. 9. 

At this point let us discuss a possibly more direct method for the ex- 
perimentalist to determine the dynamic interaction function d?"(k, co) from 
the measured S(k, co). What this method amounts to is a prescription for 
separating out all the effects due to the interaction of the particles from those 
due to free-particle motion in the measured coherent neutron scattering or 
light scattering frequency spectrum. 

From Eq. (21) we have 

r co 4- i~) = X-~(k, co 4- ie) - -  Xo~(k, co 4- ie) (38) 

from which we obtain, by equating the imaginary parts of both sides, 

r  co) = - - X " [ ( X ' )  2 + (X")q -1 4- X~[(Xo') = 4- (X~)2] -1 (39) 

the arguments of all functions on the right being k, co. The second term on the 
right, the free-particle term, can easily be calculated for all k, co using (34). 
Since X"(k, co) = Ofl~oS(k, oJ)/2 and since x'(k, co) is given in terms of x"(k, co) 
by (33), the function r co) is in principle completely determined by the 
experimental S(k, co). The only difficulty may lie in the evaluation of the 
principal value integral (33) since the latter requires knowledge of S(k, co) 
over a large frequency range. Although we have not done so in this report, 
one could now attempt to calculate r w) in the region 1 ~< k ~< 4.4 A -1 
for liquid argon from the experimental values of S(k, co) obtained by Sk/31d 
et al. (s) and compare this with the ansatz expressions for qV(k, co) considered 
in Section 6. 

In a sense, the discussion of the last two paragraphs amounts to a frequen- 
cy dependent generalization of a procedure long used in the case of the static 
structure factor S(k). Namely, experimental (or theoretical) knowledge of 
S(k) allows one, via Eq. (9), to determine the direct correlation function 
C(k); the latter is a measure of the correlation between two particles brought 
about by their mutual interaction as well as due to the interaction with other 
particles. Indeed, knowledge of S(k) or C(k) has been used to determine the 
interatomic potential v(r). (21) 

Equations (32) and (39) allow us to establish bounds on r co). 
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Namely, the fact that cox'(k, co) >~ 0 and the above equations imply that 
for all k and co 

H u 

coXo coff" co + coXo 
(xo'Y' + > / -  (Xo') + (x;7' 

(4o) 

4. COLLECTIVE MODES, NEGLECTING C O L L I S I O N A L  
D A M P I N G  

Even though we shall find that the effects of collisions as described by the 
function cff'(k, co) cannot be neglected in a classical liquid, it seems worth- 
while to discuss and review some simple cases in which collisional effects are 
neglected. Comparison with experimental results will thus serve to emphasize 
the complete inadequacy of simple theories such as the mean field approxima- 
tion (1) to account properly for observed density fluctuations in classical 
liquids. 

4,1. Dispersion Relations, Neglecting All Damping 

If  one supposes the existence of collective modes for the density fluctua- 
tions in a simple liquid and neglects all damping, one can directly obtain 
estimates for the dispersion relations from the sum rules (8)-(12). Thus, the 
assumption that X"(k, w) has sharp peaks located at :t:co0(k) and the 
requirement that the elastic sum rule (8) and first moment sum rule (11) 
be obeyed lead to 

Xt,"'k co)/co = �89 -- coo(k)) -q- S(co -t- coo(k))] (41) 

wherea4, 22) 
coo2(k) = kZkBT/mS(k) = k2vr2/S(k) (42) 

The curve co0(k) versus k is shown in Fig. 2, as obtained from the values for 
S(k) computed by Rahman. m) The dispersion relation (42) can also be 
obtained starting from the equation of motion for the density fluctuation 
operator p(k, t ) =  ~ e x p [ - - i k  "r~(t)] by applying a simple decoupling 
approximation. 123~ In the limit k --~ 0, Equation (42) predicts a linear relation 
between co0(k) and k characterized by the isothermal sound velocity C r :  

lim co0(k ) = Crk  (43) 
k - ~ 0  

Equations (41)-(43) are not in accord with experiment. In the region of 
k values (k >~ 1.0 N-l) covered by inelastic neutron scattering experiments 
it is uncertain if side peaks in S(k, co) will be observed at all. In fact, the 
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Fig. 2. Dispersion curves for density fluctuations in liquid argon. The 
curves ~o0(k), oJ~(k), and oJz(k) (solid lines) are defined by Eqs. (42), (57), and 
(12), respectively. The curves o~R(k) (heavy dots) and w~(k) (open circles) denote 
the real and imaginary parts of the complex collective mode frequency given 
in Table II. 

recent experimental results of Sk6ld et al. (8~ on liquid argon at 85.2~ in the 
range 1 A -z ~< k <~ 4.4 A -z do not reveal any structure in S(k ,  co) in the 
wings. On the other hand, in the small k region (k --* 0) covered by optical 
(light scattering) experiments, the scattering function consists of three lines: 
one central line (co ~-0) and two side lines at o) = •  (the Brillouin 
doublet) characteristic of  hydrodynamic sound modes propagating with the 
adiabatic sound velocity C~ (instead of Cr). Using these facts, de Gennes (~4) 
has used the sum rules (8) and (11) to deduce the ratio I~/I  o of the itensities 
in the Brillouin doublet to the intensity in the central line, obtaining the well- 
known result of Landau and Placzek, 

11/(lo + & )  - cT~/cs 2 = C / c ,  (44) 

where C~ and C~ are the specific heats at constant volume and constant 
pressure, respectively. 

Note that if instead of the elastic sum rule (8) one requires the third 
moment  sum rule (12) to be satisfied along with (11), the assumption of 
sharp peaks leads to a spectral function given by 

X"(k,  o~)/oJ = [~pk2/2moJ~2(k)][3(m - -  eo~(k)) + ~(oJ + cot(k)) ] (45) 

where ~o~(k) is defined by (12). The above form corresponds no better than 
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(41) to the observed scattering function. The dispersion relation coz(k ) is 
originally due to Zwanzig, (~4) whose derivation is based on an analogy with 
the phononlike excitations in solids and an approximate trial form for the 
eigenfunctions of the Liouville operator. The curve co~(k) has also been 
plotted in Fig. 2. In the limit k --* 0, cos(k ) also leads to a linear dispersion, 

where 

lira co,(k) = C~| (46) 
k~,O 

[C~)] 2 = 3Vr 2 4- (2~rp/5m) fo ~ dr r~g(r)[rv"(r) 4- ~v'(r)] (47) 

On the other hand, for large k, co~(k) is given by 

co~Z(k) ~- 3k2vr 2 4- ~2o ~ (48) 
where 

Y2o~ = (p/3m) f dr g(r) V~v(r) (49) 

represents a sort of average square oscillation frequency for an atom oscillat- 
ing in the field of all other atoms. In a harmonic solid this would correspond 
to the square of the Einstein frequency. Let us observe that both co0(k) and 
co~(k) show a strong dip at the value k o where S(k) has it first maximum. The 
mode that corresponds to ko has recently been associated with those density 
fluctuations that may be considered as precursors to freezing. (7) 

Next let us examine the predictions of the mean field approximation 
characterized by the expression (1). 

4.2. Collective Modes in Mean Field Approximation; 
Landau Damping 

First, let us compare the exact representation for X"(k, co) given by (32) 
with the approximate expression resulting from the mean-field-type response 
function (1): 

G,F(k, co) = Xo(k, co)/{[1 + r Xo'(k, co)l 2 + [~(k) Xo(k, co)P} (50) 

This expression is obtained from the exact expression (32) by putting 
r co) = 0 and taking for r co) an effective potential ~b(k), independent 
of co. The scattering function S(k, co) corresponding to (50) is given by 

SMF(k, r = (2~r)1/~ exp (--x ~) 
kvr  {1 4- pile(k)[1 -- 2xF(x)]} 2 4- [pile(k) V'~x exp (--x2)l 2 

(51) 
where x and F(x) are defined in (34). With r given by (9) and with an 
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Fig. 3. Plot of the scattering function in mean 
field approximation as a function of the dimensionless 
variable x = oJ/(~/2kvr) for various values of k, with 
the effective potential q~0(k). 

approximate analytic expression for C(k), the expression (51) has been plotted 
in Ref. 1 both against wave number k (for various values of/3hoJ) and against 
frequency co (for various values of k). In Fig. 3 we have plotted SMF(k, o)) 
using the values for S(k) obtained by Rahman. Im For small k the charac- 
teristic feature is the existence of pronounced and very narrow side peaks 
and a broad, low-lying central plateau. The sharp peaks broaden with 
increasing k and disappear gradually. This behavior is characteristic of the 
mean field approximation and is in no way particular to the choice (9) for the 
effective potential ~b(k). If  one had chose the expression (17) for the effective 
potential in (51), the resulting plots would be similar to those in Fig. 3 
except that for the same value of k the peaks in the latter case would be 
narrower and shifted more to the right with respect to those in Fig. 3. A 
comparison between the behavior of (51) resulting from the use of the 
effective potentials (9) and (17), respectively, for the same value of k is 
shown in Fig. 4. 

822/8/2-2 
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Fig. 4. Comparison of scattering functions in 
mean field approximation [Eq. (51)] for the potentials 
r (curve A) and r (curve B) for the same k 
value, 1.5 N -z. 

It is of some interest to analyze the expression (50) in greater detail and 
to show how it predicts explicitly the dispersion relation and damping of 
collective modes in the mean field approximation. To see this, it is only 
necessary to substitute the asymptotic expansion (36) for the function 
Xo'(k, co). For co >~ k v  T o n e  then has 

4 ;t.~t_ 0 ) )  co Xot~, 
~-  co s , ' --  o2)~ X~F(k ,  o2) "{093 - -  (pk~/m)  r + (3k~vr~/o2z)]} ~ + [r Xo(K, 

(52) 

From this expression we see that the spectral function may have peaks at 
the frequencies wR(k) given by the solutions of the equation 

o24 _ o2~(pk2/m)~b(k) - -  3 (pk4vr2 /m ) r  = 0 (53) 

The physical solution gives 

o2R2(k) = (pk~/2rn) ~b(k){1 + [1 + 12rnk2vr~/ok~r 1/2} 

(pk~/m)  r + 3k~vr ~ 
(54) 
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This solution will apply only for values such that kv T ~ r i.e., for 
k2vr 2 ~ ok2r 

As an aside, let us note that in the special case of a plasma, where the 
interactions are Coulomb interactions described by the potential 

r = 4rce2/k 2 (55) 

(e being the electronic charge), Eq. (54) predicts the well-known dispersion 
relation for plasma oscillations in the self-consistent field approximation(5): 

w~Z(k) ~ co~z q- 3k2vr 2 = w~[1 q- 3(k2/kDZ)] (56) 

where co~ = 4rcpe2/m is the square of the plasma frequency and kD is the 
Debye screening wave number. (25) 

In the case of classical liquids, however, Eq. (54) predicts a dispersion 
which varies linearly with k for small k. Depending on the form we choose 
for the effective potential ~(k) (cf. Table I), Eq. (54) will predict different 
values for wR(k). If  we use the expression (9) (consistent with the elastic 
sum rule) in (54), we obtain 

o~R~(k) = [ ~ % ~ / s ( k ) ]  + 2 k %  ~ =-- co)~(k) (57) 

Except for the small term 2k%r 2, this is the same dispersion relation as 
Eq. (42) obtained from the delta function ansatz. The dispersion curve 
predicted by (57) lies above the curve c%(k) and below the curve oJt(k) as 
shown in Fig. 2 [this follows from the inequality (29) discussed in Appendix 
B]. Because of the restrictions imposed on the derivation of (54), the relation 
(57) will be valid only as long as S ( k ) ~  1, which for liquid argon is the 
case only for values of k < 1.5 A -z, as confirmed in Fig. 3. In the limit 
k --* 0, Eq. (57) yields 

mR(k) = Crk[1 + (2vr2/CrZ)] ~/2 (58) 

Since the ratio vr/Cr in liquids is in general much less than unity, Eq. (58) 
predicts the existence of collective modes propagating with a velocity which 
is only slightly larger than the isothermal sound velocity Cr .  However, as 
already pointed out, in actual fact the long-wavelength modes are sound 
modes propagating with the adiabatic sound velocity C8 which is considerably 
larger than Cr .  If  we use for r the expression (17) [to be consistent with 
the third moment sum rule (12)], the dispersion relation (54) yields 

coR2(k) -- wz2(k) (59) 

which is the same expression as found by use of the delta function ansatz 
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(45). However, the present derivation restricts the validity of (59) to k values 
such that kvr ~ (0z(k). 

The mean field approximation embodied by the expressions (50)-(54) 
also offers a simple description of the damping of the collective modes. For 
this purpose it is useful to rewrite (52) for (0 near ~oR(k) in the form 

__(02 
" ~ - (0 XotK,  (0)1-~ XMF(k, (0) - - ~  I m [ ( 0  ~ (0R2(k) + i r  ~ . . . . .  

(03 
-- --(0' Im [ ( 0 8  (0a(k) q_ ir  '/2 pfl-~r exp ( 

(0 2 

(6o) 
In the neighborhood of the collective mode frequency mR(k), this may be 
further approximated by 

pk 2 
t ;  

XMF 
m 

((0dk) l ~ oW(k) I-' 
] 

(61) 

where we assumed kvr ~ (0R(k). To obtain more explicit expressions, one 
may substitute the various expressions for (0R(k) corresponding to the 
different r discussed above. Since the exponential involved in the above 
expression is in general small, the mean field theory leads us to the existence 
of well-defined collective modes with small damping for which 

[ (0~(k) 1~ oW(k) 
(0(k) ~ o~R(k)11 - - i  (-~-)1/~ / k v r ]  exp [ 2k2or2 ]t (62) 

The small damping of these collective modes is called Landau damping 
because it is analogous to the damping of plasma oscillations as described 
originally by Landau. (5) For this latter case one has [of. Eq. (56)] 

kD 23k2 i ( ~ )  1/2 ( ~ ) a  exp (-- kD2]] (63) (0(k) "~ (0~ [ L 1 + - ~ - U ] J  

Whereas the damping of the plamsa oscillations in mean field theory is 
exponentially small for k---> 0, that of the collective modes in classical 
liquids is proportional to k, <~3) as is seen by using either Eq. (58) or Eq. (46) 
in the expression for the complex frequency (62). Thus, using (58) and 
neglecting terms of order VT2/CT z compared to unity, we obtain 

_ _ ( c + ) ]  (64) 
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Notice that the size of this damping depends crucially on the ratio CT/U T "~ the 
larger this ratio, the smaller the damping. The reason for this result is as 
follows: As is well known, the Landau damping is due to a transfer of energy 
from the collective mode wave to those particles moving with the phase 
velocity of the wave, oJR(k)/k ~ Cr .  Because these particles are moving 
with the wave, they interact strongly with it and absorb energy from it. Now, 
the larger the ratio Cr/VT, the less particles there will be in the tail of the 
Maxwellian velocity distribution with velocity Cr which can absorb energy 
from the wave, and therefore the smaller the damping of the wave. 

The above description of collective modes in the mean field approxima- 
tion is similar to the description of collisionless or zero sound modes in 
liquid SHe, as described, for example, by the Landau theory of Fermi 
liquids. (26) A basic difference between the zero sound modes in liquid 3He 
and collective motions in classical liquids is that while collisional damping 
can indeed be neg!ected in a Fermi liquid for T---> 0, this is by no means the 
case in classical liquids. As will be seen in Section 6, the sharp side peaks 
in SMF(k, CO) disappear as soon as one takes account of collisional damping 
through inclusion of a reasonable form for r co) in the general formula (32). 

In Appendix C we rederive some of the expressions for the Landau 
damped collective modes starting from another, very general formalism 
described in the next section. 

5. A N O T H E R  E X A C T  R E P R E S E N T A T I O N  FOR x ( k , z )  

We have already remarked that the function r co) contains informa- 
tion about the dynamic effects of the particle interaction. In particular, as we 
shall see, r ~o) describes the damping of collective modes brought about 
by collisions and, in the limit of small k and ~o, must in principle provide us 
with information about the hydrodynamic behavior of the system. It is 
therefore useful to compare the representation (20) with another exact 
representation for X(k, z) which has been of considerable use in analyzing 
the hydrodynamic expression for the spectral function (s~ and in extending 
the latter ~27) to larger values of k, co. The representation of which we are 
speaking is 

--Pk2/m (65) 
x(k,  z) = z2 _ [pk2/mx(k) ] + izk2D(k, z) 

or, equivalently, 

X-Z(k, z) -~ X-z(k) --  (m/pk~)[z ~ -~ izk2D(k, z)] (66) 

where D(k, z), the complex longitudinal damping function, is analytic off 
the real axis and is given in terms of the real, wavenumber- and frequency- 
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dependent damping function 2 D'(k ,  co) (an even function of co and positive 
for all k and co) by 

D(k ,  z) = f ~  do)= D'(k,____co) (67) 
_~ T r l  c o  - -  Z 

For the analysis presented in the next section it will be instructive to 
recast Eq. (65) in a general form for the equation of motion for the average 
density fluctuation <p(k, t)> in the presence of an external potential u(k, t). 
From the definition of the linear response function we have [cf. Eq. (2)] 

(p(k, t)> = -- dr' 2(k,  t - -  t ' )  u(k,  t ' )  (68) 

where 

2(k, t -- t') = (dco/2zr) x(k ,  co -k ie) exp[--ico(t  - -  t')] 
o~ jo 

= (dco/2rr)[x'(k, co) q- ix"(k,  co)] exp[--ico(t -- t')] (69) 

It is easily verified that (65) is equivalent to the following general equation 
of motion for <p(k, t)>: 

f 
~ 

<fi(k, t)> + coo2(k)<p(k, t)> + k 2 dt '  D(k ,  t - -  t')</5(k, t')> 
- o o  

= --(pk2/rn) u(k, t) (70) 

where the dots denote time derivatives and co02(k) = pk2/mx(k)  = k2vr2/S(k). 
Equation (70) is the general equation of motion for an oscillator with 
"natural" frequency co0(k ) subjected to a time- or, equivalently, frequency- 
dependent frictional force. The above equation is, in fact, equivalent to the 
generalized hydrodynamic equation for the longitudinal current fluctuation 
(when combined with the continuity equation for the conservation of particles 
derived recently from a heuristic physical argument by Ailawadi et al. ~s) 
The time-dependent damping function is given by 

/)(k, t -- t') = (dco/27r) D(k ,  ~o + ie) exp[--ico(t -- t')] 
- o ~  

= (dco/2rr)[D'(k, co) + iD"(k,  co)] exp[--ico(t -- t')] (71) 

and, since D(k ,  co + ie) is analytic in the upper half co plane, it follows 
that ~ ( k ,  t - -  t'), just as 2(k,  t - -  t'), vanishes for t < t'. 

Reference 25, Chapters A-C. 



Collective Modes, Damping, and the Scattering Function in Classical Liquids 129 

We should emphasize that Eq. (70), being equivalent to (65), is an 
exact equation of motion for the average density fluctuation <p(k, t)}, 
requiring for its justification only the analyticity of x(k, z) and X-l(k, z). 
The above equations were, of course, purposely designed (~~ to provide a 
rigorous framework within which to examine some phenomenological 
descriptions such as that offered by hydrodynamics. However, the forms of 
Eqs. (65) and (70) make them suitable for describing density fluctuations, or 
collective motions even for values of k where hydrodynamics no longer 
applies. (27) In this connection it is appropriate to recall that the normal mode 
frequencies oJ(k) (in general, complex) are obtained as the poles of the 
analytic continuation of x(k, z) in the lower half of the complex z plane. Since 
we have defined x(k, z) and D(k, z) by Eqs. (3) and (67) to be analytic 
functions of z off the real axis, the above statement means, more precisely, 
that we must start with x(k, z) and D(k, z) defined for z in the upper half 
of the complex plane, analytically continue into the lower plane (to be 
denoted by the subscript a), and look for the solutions of the equation 

z 2 -- Wo2(k) -k izk~D~(k, z) = 0 (72) 

This equation is just a generalization of the simple, damped harmonic 
oscillator equation for the complex normal mode frequency [cf. Eq. (70)]. 
[In Appendix C we discuss a simplification of Eq. (72) for the case where the 
imaginary part of the frequency is very small.] 

In the next section we shall apply the above discussion to the description 
of collective modes and their damping. First it is necessary to examine 
some properties of the real damping function D'(k, co) and to show its relation 
to the function ~"(k, co). 

By comparing the expansions for large z of both sides of Eq. (66) and 
making use of (19), one finds immediately the following sum rules for 
D'(k, o,)(27~: 

f= (dco/zr) D'(k, co) = (1/k2)[~oz2(k) -- co02(k)] (73) 
c~ 

f /~ (d~/rr) co2n'(k, w) = (1/k2)[@@(k)} -- <m~2(k)}2] (74) 

The exact expression for the spectral function x"(k, oJ) which follows 
from (65) is 

~ok2n'(k, co) (75) 
{co 2 -- [pk"/rnx(k)jkZ/wK"D"(k,-- w)} ~ q- [oJk2D'(k, co)] 2 x"(k, CO) 

where 

(76) 
d-az-- 77" O) - -  CO 
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Thus, the basic unknown function in this representation is D'(k, ~o). The 
exact expression for the scattering function S(k, w) in this representation is 
given by Eqs. (6) and (75). Let us note in particular the simple expression 
for S(k, o~ = 0): 

S(k, o~ = O) = S2(k)(2/VT~)[l~ D'(k, o~)1 (77) 

[compare Eq. (37)]. We shall make use of Eqs. (75) and (77) in Section 6. 
We obtain the relation between Martin's damping function D'(k, ~o) and 
the collisional damping function r co) by equating the right sides of (21) 
and (66) and taking the imaginary parts for z ~ oJ + ie. This yields 

D'(k, ~) = Do'(k, co) --  (p/mw)r oJ) (78) 

where 

D0'(~, ~) -~ P Xo(k, o~) 
mo~ [X0'(k, w)] ~ if- [x;(k, co)] ~ (79) 

These equations can be interpreted as follows: The total damping function 
D'(k, w) consists of two parts, a part proportional to r oJ) which re- 
presents the collisional damping arising entirely from the dynamic interaction 
between the particles, and a part D0'(k, co) which represents the Landau-type 
damping discussed previously; this latter type of damping is the only one 
which entered in the MFA. Using Eqs. (78), (79), and (34), it is easily verified 
that the expressions (77) and (37) are consistent with each other. 

By comparing the sum rule expressions for D'(k, ~o) with those for 
r ~o) [Eqs. (28) and (30)], it is found that Do'(k, r.o) obeys the sum rules 

~ ( d c o / r r )  = • 2Vr ~ (80) Do'(k, (0)  2kBT/m 
co 

f o~ (dco/~') a, ZDo'(k, w) 6k2vr 4 (81) 
oo 

For the sake of completeness, we also state the relation obtained by equating 
the real parts of Eqs. (21) and (66) for z ~ ~o + ie: 

mo~ ~ , Xo'(k, oJ) 
mCOp D"(k, co) = dp'(k, w) - -  X-l(k) + p ~ -  + [Xo (k, co)] ~ + [xo(k, co)] 2 

= r co) -- Co(k) q- rn._~ Do(h ' ~) (82) 
P 

These equations define the function Do(k , o J). It is easily verified that Eqs. 
(82) and (75) are indeed consistent with each other, as must be the case on 
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account of the analyticity arguments employed. In Appendix C we show 
how the Landau-damped collective modes discussed in Section 4.2 are 
derived starting from (75) and the above expressions for Do'(k, co) and 
Do(k, co). 

It is interesting to compare the relative strength of collisional damping 
and Landau-type damping in the limits of small k and large k, respectively. 
Using (73) and the limiting values of co,2(k)/k2 and VT2S(k) -1 appropriate to 
liquid argon at T = 76~ and p m =  1.407g/cm a as calculated by Rahman, (m 
one finds for the total weight of the damping function in the limit k -+ 0 

lira (dco/rr) D'(k, co) 
k ~ O  m 

= lira [co~2(k)/k2] -- Cr 2 
k - ~ 0  

= (180- -39)  • l0 s cmZ/sec 2 = 141 • l0 s cm2/sec 2 (83) 

On the other hand, the weight of Do'(k, co) for argon at this temperature is 

f_~o (dco/rr) D0'(k, co) = 2Vr 2 = 3.2 • l0 s cm~/sec 2 
co 

(84) 

independent of k. This shows the overwhelming dominance of the collisional 
damping in the limit of small k (hydrodynamic limit) as compared to Landau- 
type damping. On the other hand, in the opposite limit of large k, we find 
from (73) and (48) 

f |  (dco/~r) D'(k, co) = (1/kZ)[3k2vr z q- .f2o 2 -- kerr 2] 
- o o  

L (85) 

i.e., the damping for large values of k will be due almost entirely to Landau- 
type damping. The above analysis based on the sum rules (73) and (80) 
suggests therefore a quick and easy way for assessing the relative importance 
of collisional damping at any value of k. 

The overwhelming dominance of the collisional type of damping in the 
small-k limit is even more apparent when we compare the second frequency 
moments of D'(k, co) and Do'(k, co). Whereas the right side of (74) approaches 
a finite value in the limit k -~ 0, that of (81) tends to zero. 

To conclude this section, let us note how the longitudinal viscosity can 
be derived from a knowledge of the function (a"(k, co). As is well known, the 
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longitudinal viscosity is given by the equivalent expressions (Ref. 25, Chapters 
A-C) 

(1/pm)(~r 1 + ~) = limo~_,o [tim (m~o3/pk 4) X"(k, co)] 

= lim [lim D'(k, a,)] (86) 
r k ~ O  

where ~ and ,7 are bulk and shear viscosities, respectively. From Eqs. (78) 
and (34) we then find that 

~1 q_ ~ = _p2 l!m {lim [r w)/w]} 
w 0 k-~O 

(87) 

Here we shall not pursue the calculation of these transport coefficients and 
associated hydrodynamic behavior any further. This will be considered in a 
subsequent paper. 

6. COLLECTIVE MODES A N D  C O L L I S I O N A L  D A M P I N G  

As we have already pointed out, all the dynamic effects of the particle 
interaction are contained in the function d?"(k, co), whose determination 
would be the task of detailed microscopic calculations. Much can be learned, 
however, by making assumptions about the behavior of d?"(k, co) and testing 
these assumptions by comparing the results obtained with experimental data. 
The simple models we shall discuss amount to considering only the viscous- 
type damping of collective modes, neglecting the damping due to thermal 
diffusion. It has been shown that for the region of k values investigated by 
neutron scattering experiments (s) (k >~ 1 ,s the error due to omission of 
temperature fluctuations is small. (2s) The latter fluctuations are important 
mainly in the hydrodynamic limit k -+ 0. 

The simple forms we consider are (i) a Lorentzian-type ansatz 

r o~) = [ r  - -  r + ~ o ~ ? ( k ) ]  (88)  

for which 

r z) -- r = [Co(k) -- r =7 izfl(k)] (89) 

r w) -- r --= [Co(k) -- r § o~-l~(k)] (90) 

and (ii) a Gaussian-type ansatz 

r co) = [Co(k) -- r exp[--w%2~(k)/~] (91) 
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with corresponding 

r z) -- r = [Co(k) -- r + zr2(k)W(z~'2(k)/v~,)] (92) 

r co) -- r = [Co(k) -- r -- 2uF(u)] (93) 

where F and W are defined in Eqs. (34)-(35) and the variable u ~- cor~(k)/~/~. 
Both the above forms (88) and (91) satisfy the basic sum rule (28). Note 

that because of the inequality r ~< r proved in Appendix B, the right 
sides of (88), (90), and (91) are nonpositive quantities. 

It should be pointed out that the form (88) does not have a finite first 
frequency moment as required by the sum rule (30). Moreover, the complex 
potential (89) [where the upper (lower) sign corresponds to z in the upper 
(lower) half complex plane, respectively] is not consistent with the form of 
the asymptotic expansion (22). Nevertheless, (88) and (90) lead to a very 
good description of the observed coherent scattering function S(k, co). 

The expression for S(k, co) is obtained by substituting (88) and (90), or 
(91) and (93), into Eqs. (32) and (6). The resulting expressions satisfy the 
zeroth, second, and fourth frequency moment sum rules, regardless of bow 
the relaxation times rl(k ) or r2(k ) are determined. Although there have been 
some theoretical attempts (2~,~~ at calculating the relaxation time for longi- 
tudinal density and current density fluctuations, we feel that none can be 
considered to be entirely satisfactory. In particular, in view of the results 
obtained below no simple interpolation expressions (~71 for ~'l(k) or r~,(k) will 
be adequate. 

In the case of the Lorentzian form (88) we cannot employ any sum rule 
arguments to determine ~-l(k) in terms of microscopic quantities so that 
recourse will be made to experimental data (see below). On the other hand, 
for the Gaussian form (91) we can determine ~'2(k) by requiring that the first 
moment sum rule (30) for r co) also be satisfied. When this is done we 
obtain ~-2(k) as 

7r r -- r ~-~r[<co~2(k)) -- c%2(k)] (94) 
~22(k) = 2 r : @o~4(k)> - -  <cog2(k)> 2 - -  6(kvr) 4 

With this choice for ~-2(k), the S(k, co) determined by (91), (93), and (94) 
satisfies all moment sum rules up to and including the sixth. 

Unfortunately, at present the calculation of ~-~(k) on the basis of (94) 
is very difficult on account of the unknown three-particle distribution function 
entering into (co~4(k)> [cf. Eq. (13b)]. Thus far only the limiting value for 
k ~ 0 of <coz4(k)>/k ~ has been obtained aa) using the superposition approxi- 
mation for ga. Knowledge of <co~4(k)> would be of general interest and 
provides for theoretical estimates of the longitudinal viscosity (3~ [cf. Eqs. 
(86) and (87)]. 
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In the absence of reliable theoretical values for ~-l(k), %(k), or (c@(k)) 
we have chosen to determine these quantities from experimental data. The 
most convenient and direct way for accomplishing this is to make use of the 
experimental results for the scattering function at zero energy transfer. The 
latter is given in general by the exact expression (37), which for the approxi- 
mations (88) and (91) yields 

S(k ,  co : O) = S2(k){[(2~-)i/~/kVT] + 2p~[r -- r (95) 

where we have put ~-l(k) = ~'2(k) = ,(k). We have used the values for S(k )  
and Co(k) obtained from Rahman's molecular dynamics calculations (11) 
on liquid argon at T = 76~ and p m =  1.407g/cm 3 (cf. Fig. 1) and the 
experimental values for S(k ,  ~o = 0) for liquid argon 36 at T = 85.2~ 
obtained by SkSld et al. r The resulting values for ~-(k) are given in Table II 
and plotted in Fig. 5. Notice the structure in ~-(k), in particular the strong 
dips for k values near those where the static structure factor S(k )  has maxima. 
At these k values the collisional damping is thus rather slowly varying over 
the frequency range of interest. 

Table II. Values for T(k), TD(k), and (col4(k)) As Determined from 
Eqs. (95), (103), and (94), Respectively, Using the Experimental Values for 

S ( k ,  co = 0) Obtained by SkSId e t  a l .  ~8) a 

k, ~'(k), 7D(k), (c@(k)),  O.,R(k), ~o~(k), 
~ - 1  10 -13 sec 10 -18 sec 1050 sec -4 1012 sec -1 10 z~ sec -z 

1.0 2.66 2.76 113 9.70 - -  1.33 
1.2 1.96 2.09 129 9.58 - -  1.84 
1.4 1.18 1.39 151 8.43 --2.87 
1.6 1.05 1.32 127 7.29 - -3 .22  
1.8 0.978 1.33 102 6.33 - -3 .47 
2.0 0.243 0.839 962 3.33 --5.65 
2.2 0.428 0.999 325 4.97 - -4 .38 
2.4 0.842 1.24 136 6.88 --3.21 
2.6 0.922 1.24 163 7.96 --  3,06 
2.8 0.970 1.23 198 8.82 - -  3.11 
3.0 1.01 1.22 223 9.34 --3.25 
3.2 0.633 0.953 380 8.74 --4.26 
3.4 0,408 0.819 684 7.94 - -5 ,00  
3.6 0,302 0.783 1030 7.52 - -5 .14 
3.8 0.166 0.730 2850 7.07 --  5.22 
4.0 0.296 0.803 971 8.20 --4.58 
4.2 0.487 0.878 507 9.32 - -4 .04 
4.4 0.480 0.850 582 9.90 - -4 .02  

a ~OR(k)and ~oz(k)denote the  real and  imaginary  parts  of  the  complex  no rma l  m o d e  
f requency as de te rmined  f rom Eq. (104). 
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'C) 

1.0 2.0 o=1 3.0 4.0 
k CA) 

Fig. 5. Wavenumber dependence of the longitu- 
dinal, viscous relaxation times ~(k) and ~D(k), as 
obtained from Eqs. (95) and (103). Smooth curves have 
been drawn through the discrete points (cf. Table II). 

With the values rl(k ) = ~2(k) = ~-(k) given in Table I I  one can now 
calculate the coherent scattering function S(k, co) for all co by substituting 
the Lorentzian forms (88) and (90) or the Gaussian forms (91) and (93) 
into the basic formulas (32) and (6). The results are shown by the solid lines 
(for the Lorentzian) and dashed lines (for the Gaussian) in Figs. 6-9 for 
various values for k. The experimental points of SkSld etal. (s~ are also shown 
in these figures. Notice that for k = 1.0 and 1.2 ~-1  the calculated S(k, w) 
shows remnants of a side peak, which we know must exist in the hydrodyna- 
mic limit. On the other hand, the experimental S(k, co) for these k values does 
not give a clear indication for such remnants of  a side peak although a 
trace of  some structure seems to be borne out. In connection with Fig. 9 it 
should be noted that since this is a logarithmic plot, the discrepancy between 
experimental and calculated S(k, co) for large co (where the scattered intensity 
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Fig. 6. Plot  of the  coherent  scattering funct ion 
S(k, o~)/2~ as a function of ~o for the k values indicated. 
The crosses denote the experimental results of SkOld et 
al. (8) for liquid argon 36 at T = 85.2 ~ The solid and 
dashed lines represent the results of the theory as 
described in Sections 3 and 6. 

is small)  is magnified.  F o r  the smallest  wave numbers  the  Loren tz ian- type  
ansatz  gives somewha t  bet ter  agreement  with the exper imenta l  da t a  then  the 
Gauss ian- type  ansatz.  However ,  for  large co the  Gauss i an  would  yield a 
bet ter  result  for  S(k, ~)  since all f requency moments  of  the la t ter  r ema in  
finite, in cont ras t  to  the S(k, w) calcula ted with the Lorentz ian  form. 

Hav ing  calcula ted S(k, ~o), one can also ob ta in  ~o~S(k, ~), which is 
p r o p o r t i o n a l  to the spectral  funct ion for the  longi tud ina l  current  f luctuations.  
This funct ion  d iv ided  by  2k2VT ~ is p lo t ted  in Figs. 10 and 11, which also show 
the results based  on the measured  S(k, o~). The above  funct ion shows a 
m a x i m u m  in its dependence  on oJ at  a cer tain nonzero  value of  the f requency 
for  all systems, including an ideal  gas; for  this  last  system the m a x i m u m  of  
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Fig. 9. Plot on a logarithmic scale of the coherent 
scattering function S(k, ~o)/2~r as a function of ~o for 
k = 1.0 and 2.0/~-1. The solid circles and crosses denote 
the experimental results of SkSld et al. ~8) The solid, 
dashed, and dash-dotted lines represent the results of the 
theory outlined in Section 6. 

~o~S(k, co) occurs at  v '2kvr .  The values ob ta ined  f rom the above  theory  
a long with  those  ob ta ined  f rom the exper imenta l  S(k, oJ) and  by  R a h m a n ' s  m) 
molecu la r  dynamics  calculat ions are shown in Fig. 12. W e  notice tha t  for  
large co the exper imenta l  values for  ~o~S(k, ~o)/(2k~vr z) lie consis tent ly above  
the theore t ica l  values in Figs. 10 and  11 and  do no t  seem to a p p r o a c h  zero 
rap id ly  enough,  as required for  consistency with  the  sum rules. 

Us ing  the values of  ~-2(k) = 7(k) ob ta ined  f rom (95), we have used Eq. 
(94) to  calculate the  quan t i ty  (~@(k)) .  The results are given in Table  II .  
No te  tha t  for  k =- 1.0 ~ - ~  we ob ta in  f rom Table  I I  

(~@(k)) /k  z : 1.12 • 1036 cm2/sec ~ (96) 

which is close to the value compu ted  by  Fors t e r  et al. 115) in the  l imit  k -+  0 
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Fig. 10. Plot of the longitudinal current spectral 
function o~2S(k, oJ)/2kZvr 2 as a function of co. The crosses 
denote the experimental results of SkOld et al. (8~ The solid, 
dashed, and dash-dotted lines represent the results of 
the  theory described in Section 6. The area under each 
curve is Tr/2. 

using the superpos i t ion  a p p r o x i m a t i o n  for  a rgon  at  T ~- 79~ and p m  = 

1.415 g/cm3: 

l ira [ ( ~ 4 ( k ) ) / k  2] - 0.995 • 10 ~6 cm2/sec 4 (97) 
k ~ 0  

I t  is surpr is ing to note  tha t  the funct ion  (~oz4(k)) thus ob ta ined  has sharp  
m a x i m a  at  or  near  those  wave numbers  where S ( k )  has maxima,  in cont ras t  
to o)~2(k), which has m i n i m a  there. 

To answer in a quant i ta t ive  m a n n e r  the quest ion o f  whether  the collective 
modes  in l iquid a rgon  for  k ~> 1 A -1 are p ropaga t i ng  or  nonpropaga t ing ,  
it  is more  convenient  to use the K a d a n o f f - M a r t i n  (1~ representa t ion  discussed 
in Section 5. The basic  equa t ion  we use is Eq. (72) for  the complex  n o r m a l  
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Fig. 12. Dispersion curves for longitudinal current fluctu- 
ations in liquid argon. The open circles denote the values 
obtained by RahmanJ  m The crosses denote the values obtained 
by Sk/31d e t  al .  (s) The solid and dashed lines represent the 
results of the theory described in Section 6. The dashed straight 
line gives the result for an ideal gas at T = 76 ~ and mass 
of argon 40. 
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mode frequency in the presence of a complex, frequency- and wavenumber- 
dependent damping function. 

A particularly convenient phenomenological description of damping is 
that of Maxwell and Drude, where one assumes that (az) 

D(k,  z) = b(k)/[1 - -  izrD(k)], l m  z > 0 (98) 

where b(k) and rD(k) are functions to be determined. The above model for 
the viscous-type damping of collective modes has already been discussed by 
Chung and Yip, (27) though in a different manner from the discussion which 
follows. 

From (98) we obtain for the real functions D'(k,  co) and D"(k, w) 

D'(k ,  w) - -  b(k)/[1 + W%D~(k)] (99) 

O"(k, w) = b(k)WrD(k)/[1 + W2-D2(k)] (I00) 

Notice that both the collisional and Landau-type damping effects [cf. Eqs. 
(78)-(82)] are here lumped together into the single expression (99). The 
latter will consequently not lead to the correct free-particle limit of the 
spectral function (75) for large values of k. 

By requiring that the sum rule (73) be satisfied by the function (99), we 
obtain the relation 

f f  d., n ' ( k ,  m) - -  
b(k) 1 

~ ~D(k) -- k s [oC(k) -- oC(k)] (101) 

which yields the function b(k) in terms of w, ~, COo 2, and rD(k ). For the last 
quantity Chung and Yip (~7) have used a simple interpolation expression, 
which, however, turns out to be inadequate. We therefore proceed as in the 
above discussion for r co) and determine ~'D(k) from the experimental 
values for S(k ,  co = 0). We make use of the exact expression (77), which 
for the approximation (99) becomes 

S(k ,  co -~ O) ~- S2(k)[2rD(k)/k~vT2][oJ~2(k) --  ~o02(k)] 

= S2(k) 2rD(k){2 + pfi[r - -  r (102) 

Comparing with the expression (95) which was used to determine r(k),  we 
find the following relation between rB(k) and r(k): 

TD(k) = [(�89 4- pi l led(k)  --  r ~-(k) 
2 + pfi[?5~(k) --  r (103) 

The values for ~'D(k) thus obtained are also shown in Table II and plotted 
in Fig. 5. 

With the functions D'(k,  co) and D"(k, w) [Eqs. (99) and (100)] thus 
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determined one can again calculate the scattering function S(k, co) using the 
formulas (6) and (75). The resulting S(k, m) satisfies the zeroth, second, and 
fourth frequency moment sum rules. The results are shown in Figs. 7-11 by the 
dash-dotted line. It turns out that for the smallest k values (I <~ k ~< 1.6 ~-1) 
the result for S(k, co) is practically indistinguishable from the case considered 
at the beginning of this section [cf. Eqs. (88)-(90)) and indicated by the solid 
lines in Figs. 6-11. However, for the largest k values (3.8 <~ k ~< 4.4 ~-1) 
the S(k, co) resulting from (99) does not agree as well with the experimental 
data as does the approximation embodied by Eqs. (88)-(90). This, of course, 
is to be expected, since for large k the forms (99) and (100) cannot be correct. 

Using the form for the complex damping function given by (98) and 
(101), the equation (72) for the complex collective mode frequencies becomes 

& - -  c%~(k) -5 iz [~ - -  c%~(k)] z b ( k )  = 0 (104) 
1 -- iz-rD(k) 

This equation can be solved exactly. There are three roots, one of which 
turns out to be purely imaginary. Here we are only interested in the solution 
~(k)  = ~_wR(k)+ lint(k), possessing both a real and an imaginary part 
and characterizing a damped mode. The results for mR(k) and oJz(k ) are 
given in Table II and plotted in Fig. 2. 

As a more precise criterion characterizing a propagating mode, we may 
take the following condition to be satisfied between the real and imaginary 
parts of the frequency: 

o)~(k) > 27rm,(k) (105) 

When this condition is satisfied the collective mode wilt propagate for at 
least several wavelengths before decaying away. From Table l[I we see that 
only the mode with the smallest k value, 1.0 ~-1, starts to fulfill this condition. 
It is precisely for this k value that we find the remnant side peak in the cal- 
culated S(k, co) as seen in Fig. 9. The "maximum" in the remnant side peak 
of the calculated S(k, co) corresponding to the above k value occurs at 
m ~ 9.4 • 1012 sec -1, which is close to the corresponding value of mR(k) 
in Table II. 

From Table II let us note in particular the large imaginary parts of the 
frequencies at or near the wave numbers where S(k) has maxima. The 
corresponding modes resemble more a diffusion or relaxation-type process. 
It has been suggested I" that these are the modes that lead to the dynamic 
instability connected with freezing and giving rise to critical fluctuations. 
Although the basic physical ideas expressed in Ref. 7 may be correct, the 
analysis presented there, however, is based on the mean field approximation 
(1), which we have shown to be inapplicable to the description of classical 
liquids. 
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7. D I S C U S S I O N  

In this paper we have presented a new approach to the calculation of the 
scattering function for classical liquids which is based on an exact representation 
for the density-density response function. The chief feature has been the intro- 
duction of an effective, frequency- and wavenumber-dependent interaction 
possessing both a real and an imaginary part. The latter has been associated 
with the collisional damping, which in classical liquids is quite large. With 
simple forms for the collisional damping function this theory permits one 
to satisfy all frequency moment sum rules for S(k, w) up to and including the 
sixth. In principle, there is no difficulty in extending the present approach 
to yield an S(k, co) satisfying still higher-order moment sum rules, although 
in practice the lack of knowledge concerning these moments seems to make 
this an unnecessary undertaking at the present time. Furthermore, the theory 
we have presented here allows one to extract useful information from the 
measured scattering function. 

In particular, by fitting the theoretical expression for S(k, ~o = 0) to the 
experimental data of SkSld et al. (s~ we have obtained values for the viscous 
relaxation time and for the sixth frequency moment as functions of k. 
Using these values for ~-(k), the calculated S(k, co) is in very good agreement 
with the experimental one, except for the smallest k values, 1.0 and 1.2 A -L, 
where our calculated S(k, o)) shows remnants of a side peak for which there 
is no clear experimental evidence. The agreement between the calculated 
longitudinal current spectral function oJ2S(k, w) and the experimental one 
can also be considered good, except for large co, where the experimental 
values lie consistently above the calculated values. This lack of agreement 
may, however, be due to the uncertainty in the experimental data for large 
values of oJ where the scattered intensity is low. 

Since it is based on an exact representation, the theory presented in this 
paper is also applicable (at least in principle) to the hydrodynamic regime. I f  
one took the existence of side peaks, corresponding to the Brillouin com- 
ponents, as marking the onset toward hydrodynamic behavior, we would 
conclude from the present calculations that the hydrodynamic regime extends 
for k values downward from 1 ~-a. In this respect, our theory is in marked 
contrast to that of Pathak and Singwi, (9~ who did not find any structure in 
S(k, co) corresponding to Brillouin side peaks down to values for k ~ 0.5 A -1. 
Of course, to give a proper description of the hydrodynamic regime, in 
particular, for the limit k --~ 0, it will be necessary to consider also the damp- 
ing due to thermal diffusion (25,~s~ and this may present some difficulties in 
extending the present calculations to smaller k values. In this connection 
we should note that it may simply be the neglect of the latter type of damping 
which causes the appearance of a side peak at k -~ 1.0 A -~ in our calculations. 
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The analysis of Ailawadi et al., C~sl however, suggests that for k >~ 1.0/~-~ 
thermal diffusion should not lead to an important contribution to the 
damping. In any case, it would be very useful to have experimental data for 
S(k, oo) for argon, say, in the region k < 1/k -t since this would provide 
valuable information on the "transition" to the hydrodynamic regime. 

In a subsequent paper we hope to apply the formalism presented in this 
paper to two other response ftmctions of current interest, namely the self- 
motion response function x j k ,  z) and the transverse momentum response 
function Xt(k, z). Both of these response functions are in a sense much simpler 
than the density response function X(k, z) discussed here. In particular both 
describe simple diffusion processes in the hydrodynamic limit. I~a~ The present 
approach allows one to obtain expressions for the corresponding transport 
coefficients, the self-diffusion constant D~ and shear viscosity ~, which are 
similar to those obtained by Martin et al. ~,~31 

Finally, let us note that the method presented in this paper could be 
applied to another exact representation for x(k, z), namely one in terms of 
xJk,  z) with the form 

x(k, z) : x~(k, z)[[1 4- O(k, z) x~(k, z)] (lO5) 

[compare (20)]. This representation allows one to describe and separate 
off all the effects associated with the exact motion of a single particle from 
the total density response function. If  the function O(k, z) is assumed to be 
independent of z, one would obtain the approximations derived by Kerr (~4~ 
and Hubbard and Beeby (~5~ from a microscopic approach (see also Refs. 2 
and 4). In fact the result of Kerr ~1 corresponds to taking O(k, z) as ~o(k) = 
--k~TC(k) [cf. Eq. (9)]. There is, of course, a difficulty associated with the 
representation (105) in that the exact x j k ,  z) is not known, so that one has 
two unknown functions to deal with. However, since x~(k, z) is a simpler 
function and can more easily be approximated than X(k, z), the representation 
(105) may well prove useful. 

A P P E N D I X  A 

In this appendix we wish to recast the exact representation (20) in a 
space-time form involving the classical one-particle distribution function 
f(p, r, t). This function is defined as the ensemble average of the one-particle 
phase space operator, i.e., 

f ( p ,  r, t) = Z ~8(p - -  p,(t)) 8(r - -  r ,(t)))  
i 

(AI) 

where p~(t) and r~(t) denote the momentum and position of particle i at time 
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t and the summation extends over all particles in the system. At time 
to = --oo we assume the system to have been in thermal equilibrium. We 
then apply an external time-dependent scalar potential giving rise to an 
extra term in the Hamiltonian of the form 

He~(t) - ~ u[r~(t), t] (A2) 
i 

The angular brackets in (A1) then denote the expectation value of the 
operator with respect to a density matrix satisfying Liouville's equation 
in the presence of Hex(t), with the initial condition stated above. 

It is well known that f(p,  r, t) satisfies the exact equation of motion 

[(8/St) + (p/m) �9 V~ -- V~u(r, t)"  V~]f(p, r, t) 

= f dr' V~v(r -- r') " f  dp' VJ2(p, r, t; p', r', t) (A3) 

wheref~ is the two-particle distribution function defined by 

f2(P, r, t; p', r', t) 

= ~ @(p -- pi(t)) 6(r -- ri(t)) 6(p' -- pj(t)) 3(r' -- r~(t))) (A4) 

As an aside, let us note that in the derivation of the MFA given in 
Ref. 7, the function f2 is approximated by 

f2(P, r, t; p', r', t) ~ f ( p ,  r, t )f(p ' ,  r', t){g(r -- r') + [p ~g(r -- r')/2 8p]} (A5) 

where g(r -- r') is the equilibrium radial distribution function. If the second 
term in the above curly bracket is replaced by zero, we obtain the approxima- 
tion of Ref. 6 (cf. Table I). The original derivation of the MFA by Vlasov (~,36) 
corresponds to replacing g(r -- r') in (A5) by unity. 

As the main point of this appendix, we claim that in the limit u(r, t) ---, 0, 
the representation (20) is equivalent to the following exact ansatz equation: 

[(0/~t) + (p/m) �9 V~ -- V~u(r, t ) .  V~lf(p, r, t) 

g .  # t 

: V~/o(p) " J d r ' ]  dr' V ~ ( r  --  r', t --  t')(p(r', t ')) (A6) 
t /  i J  

- - c o  

where fo(P) is the equilibrium one-particle distribution function given by 

fo(P) = P(2~rrnk~T) -3/2 exp(--fiP2/2m), p = f dpfo(p) (A7) 
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(p being the uniform equilibrium density) and 

(p(r, t)) = f dpf(p, r, t) (A8) 

is the average density in the presence of the external field. The real space- 
and time-dependent effective potential (spherically symmetric in a spatially 
invariant system) ~(r, t) is given by 

? dk (~o do) 
~(r, t) = ) (2~.)3 j_~ ~ q~(k, co + iE) exp(ik �9 r -- icot) 

C dk (~o &o 
= j (2~.)3 j ~  ~ [~'(k, co) + i~"(k, co)] exp(ik �9 r -- icot) (A9) 

Note that because ~(k, co -5 ie) is analytic in the upper half of the complex 
o~ plane (see Section 3), ~(r, t) vanishes for t < 0. The time integral in 
(A6) can therefore be extended to t = § oo. The meaning of the integral 
is that in establishing an effective field acting on a particle at r, t, the system 
has a "memory" for the effect of the average density at a point r' at some 
prior time t'. 

To show that (A6) is equivalent to (20), we write f(p,  r, t) as 

f(p,  r, t) ~- f0(P) _Eft(p, r, t) (AIO) 

where fl(P, r, t) represents the departure from the equilibrium distribution 
fo(P) caused by the infinitesimal external field u(r, t). According to linear 
response theory, a~ f l  is itself linear in u and hence the product f~u can be 
neglected. The rest the of the demonstration follows the well-known 
procedure (z6) for the derivation of the mean field response function (1). 
First we rewrite (A6) in the form 

[(a/at) + (p/m) �9 v,]f~(p, r, t) - V~u(r, t) �9 V~f0(p) 

f = V~fo(p) - dr' dt '  VfiS(r -- r', t -- t')(p(r', t ')) (All)  
c~ 

or, in terms of the spatial Fourier components of f1 ,  u, and q~, 

[(8/at) + ik" p/m]f~(p ,  k ,  t) - -  i k .  VJ0(p ) u(k, t) 

: i k .  V,fo(p) dt '  ~ ( k ,  t - -  t')(p(k, t ')) 
- -Qo 

(A12) 

where the average density fluctuation @(k, t)) is related to fl(P, k, t) by the 
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equation analogous to (A8). In terms of the Fourier frequency components, 
(A12) reads 

[co 4- ie -- (p" k)/m]f~(p, k, w) + k"  VJ0(p)  u(k, co) 

= - -k "  V~f0(p) r co -7 ie)(p(k, co)) (A13) 

where the positive infinitesimal e has been added to ensure the causal response 
of  the system to the external perturbation. Using the fact that the frequency 
components of the density fluctuation are given by 

@(k, co)) = f dpfl(p, k, co) (AI4) 

we finally obtain from (A13) 

@(k, co))[i 4- ~(k, co -c ie)xo(k, co 4- ie)] = --u(k,  cO)Xo(k, co 4- iE) (A15) 

where 

f dr  k"  V~fo(p)/[w -- (p- k/m)  4- ie] (A16) Xo(k, 0.) + ie) 

is the density response function for free particles. Recalling the definition 
(2) of the linear response function [cf. also Eq. (58)], we see the equivalence 
of Eq. (A15) [and hence (Ar)] to the representation (20). 

The fact that the definition (Al6) of the free-particle response function 
is equivalent to the expressions (34)-(35) follows by considering the more 
general definition for complex z: 

Xo(k, z) = f dr  k .  VJo(p)  _ pfi _ fiz ( dr fo(P) (A17) 
z -- (p" k) /m ~ z - -  (p" k) /m 

where we have used (A7). After integration over angles and an integration 
by parts we obtain 

fo(p) pz ~ 5p ~ ~ 1 
f dr  z -- (p- k) /m --  (2rrmkBT) 1/z f-oo dp exp ( - -  2m ] z 2 --  (p2kZ/m~) 

(A18) 

which is analytic off the real axis. Changing the variable of integration, the 
integral can be rewritten as 

fo(p) i .  
! dp - 

z -- (p" k) /m d 

p z f ~  exp[--co2/(2k2vr2)] 
~/~-  ~/~kvr -~ dco z 2 _ co2 

p v ~ 7  W z 
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where W(z) is defined by (35b) and VT = (kBT/m) 1/2. Substituting the result 
(A19) into (A17), we recover the formula (35a). The expressions in (34) 
are easily obtained using the equivalent representations for W(z)(2~ 

W ( z )  - ~ I ~ 
dt exp(--t  2) 

3 -o ~  7/" t - - z  

2 exp(--z 2) f0 z ~/~- dt exp(t 2) ! i exp(--z 2) (A20) 

where the plus and minus signs correspond to z lying in the upper or lower 
half complex plane, respectively. 

A P P E N D I X  B 

Here we wish to establish some inequalities related to the above work. 
First we note from the fact that oJX"(k, co) >~ 0 that it follows that the damping 
function D'(k, co) >~ 0 [cf. Eq. (75)] and hence that all the even frequency 
moments of D'(k, co) are nonnegative quantities. For the zeroth and second 
moments of D'(k, co) this implies [cf. Eqs. (73) and (74)] 

(~o~2(k)) ~ k2vr2/S(k) (B1) 

(oJ~4(k)) >~ (~o~2(k)) ~ (B2) 

the above quantities having been defined in Eqs. (12) and (13). Equation 
(B1) can be rewritten as 

k21)T 2 

S(k) >~ 3kZvr 2 + (p/m) ~ dr g(r)(1 -- cos k"  r)(l~ �9 V) 2 v(r) (B3) 

which can be recognized as a classical version of an inequality originally 
due to Bogoliubov (87) as applied to the density-density spectral function: 

f?_~ (dog.) ~ox"(k, o~) 
pfiS(k) ~ x(k) ~ ~ (doJ/~r) ~o~x'(k , co) (B4) 

Next we want to prove a stronger inequality than (B3), namely 

s(#) >~ kZvr ~ 
k~vr 2 -k (p/m) ~ dr g(r)(1 -- cos k"  r)(~" V) 2 v(r) 

or, equivalently [cf. Eqs. (12) and (57)] 

0 (B5) 

~oz2(k) ~ eo2~(k) (B6) 
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Using the definitions (9) and (17), an equivalent statement of the inequality 
(B6) is 

r >~ r (BY) 

To establish (B5), we shall use a slight modification of an inequality 
due to Mermin. (3s) Starting with the Schwartz inequality 

([ A I ~) ~ !(A*B)[2/([ B [2) (B8) 

and taking the scalar function A and vector function B of the form 

N 

A = y~ r (B9) 
/ = 1  

N 

B -- --(eBV/t 3) Z Vi[r e -~v] (BIO) 
i = l  

Mermin (3s) has derived the inequality (valid in classical statistics) 

~) ] Z ~ ,  <~(ri) VBb*(ri))[ ~ (Bll)  
r > E~=I (r Vir 2) + fi E~N.;=I (4( r3  4"(r3 V~. v j v )  i = 1  

V is the total potential energy. The function r is any twice differentiable 
function that either has the period of the cube of side L (assuming our system 
to be enclosed inside a cube) or vanishes on the surface of the cube, 
depending on whether one is using periodic or impenetrable wall boundary 
conditions. The function r is any differentiable function that has the 
period of the cube if one is using the periodic boundary conditions and is 
unrestricted if the impenetrable wall condition is used. 

For simplicity we use periodic boundary conditions; however, since 
we are only interested in the thermodynamic limit, the results will be indepen- 
dent of our choice of boundary condition. The choice (as) 

r = ~b(r) = exp(ik "r), k = (2rr/L)(nz, nz, na) (B12) 

with ni an integer, is consistent with the periodicity requirements and reduces 
(Bll) to 

~, 3) N2k 2 
exp(ik �9 r~) >~ Nk2 q- fi ~*,j=IN (r r V~ �9 VjV) (B13) 

i = 1  

In our case V is just a sum of pair potentials. Then, recalling the definition 
of S(k), (B13) becomes (39) 

s(k) >~ k~vr~ > 0 (B14) 
k2vr 2 q- (p/m) f dr g(r)(1 -- cos k"  r) V~v(r) 
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[the last inequality resulting from the fact that both numerator and deno- 
minator in (B8), and hence (B11) and (B13), are positive quantities]. 

Inequality (B14) is not quite the same as the one we want, namely (B5). 
To prove the latter we choose instead of the vector function B given by 
(B10) a scalar function B given by 

N 

B = k "  B = --(eeV/fi) ~ (k"  Vi)[r e -By] (B15) 
i = l  

Mermin's analysis (as) goes through as before, except that each gradient 
operator on the right side of (B11) is replaced by the scalar [~ �9 V. With the 
same choice for the functions r and ~b(rl) as in (B12), it is easily verified 
that we are led to (B5) and hence to (B6) and (B7), thus establishing the 
inequalities we set out to prove. 

Finally, let us note that the inequalities (B5) and (B14) imply the fol- 
lowing inequalities for the direct correlation function(~9): 

1 >~ pC(k) >~ --pf ir  = --pf ik  -2 f dr g(r)(1 -- cos k "  r)([~ �9 V) ~ v(r) 
(B16) 

1 ~ pC(k) ~ --k-2pfi  f dr g(r)(1 -- cos k "  r) VSv(r) 

A P P E N D I X  C 

Here we discuss the simplified form of the equation (72) for the complex 
normal mode frequency co(k) = coR(k) + icoi(k) when the damping is very 
small and "rederive" the dispersion relations for the Landau-damped 
collective modes discussed in Section 4.2. When the damping is very small, 
i.e., oJ~ ~ coR, we can write down explicitly the relations defining coR and 
co~ from Eq. (72): 

coR ~ --  COo2(k) --  coRkeD"(k, mR) = 0 (C1) 

col = --�89 coR) (C2) 

In this case, as seen by comparing with the expression (15), the spectral 
function X"(k, co), or scattering function S(k,  co), will have peaks at the 
frequencies co - • If, however, the damping is such that cot and m R 
are of comparable size, we can no longer expect to find any peaks in S(k,  co) 
at ~coR(k). Equations (C1) and (C2) apply in particular to the propagation 
and damping of the adiabatic sound modes in the limit k --+ 0 [when one 
uses the phenomenological form of the damping function D'(k, co) derived 
from hydrodynamics (2~). 
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In terms of r co) and r co) the above equations read (making use 
of  Eqs. (78) and (82)] 

2 tt c o ~  - k~v~ ~ - -  co~k Do(k ,  co~) - -  (pk~ /m)  r co~) = 0 (C3) 

co• = - - �89 coR) -- (p/mcoR) r coR)] (C4) 

Using (34) and (36), it is easily verified that for values of the ratio 
kvr/co ~ 1, Do'(k, co) is given by 

Do'(k , co) = (�89 ] exp(--co2/2k2vr 2) (C5) 

and the corresponding imaginary part D~(k, co) by 

2 t/ cok Do(k, co) = 2k2vr 2 (C6) 

If we neglect the collisional damping term r co), the imaginary 
part of the frequency for kvr ~ coR is given by 

~ _  1 2 t co1 --~k Do (k, coR) - - - (~r)  z/2 [coR4/(kvr) 3] exp(--COR~/2k~vT ~) (C7) 

The expression we get for the real-part coR depends on how we use 
Eqs. (C1) and (C3). If  in (C1) we replace D"(k, coR) by Dg(k, coR), we obtain, 
using (C6), 

coR 2 = coo2(k) - /  2k2vr 2 =~ co2~(k) (C8) 

[kVr ~ co2(k)]. This is the expression we obtained in (57) and which is 
consistent with the elastic sum rule (8). If, on the other hand, we use (C3), 
replacing r coR) by r [see (31)], we obtain 

coR 2 ~- 3k2vT 2 -ff (pk2/m) r ~ coz2(k) (c9) 

[kvr -~  co~(k)], which is the relation we had found in (59), consistent with 
the third moment sum rule (12). 

The spectral function x"(k, co) corresponding to these approximations, 
for kvr ~ co and co near coR(k), is given by [compare (75)] 

(pk2/m) cok~Do'(k, co) 
x"(k, co) ~-- [co~ _ co~(k)p + [cok~Oo'(k, co)p 

-- Pk~ Ira[co 2 -- coR2(k) + icoRk2Do'(k, coR)] -1 (e l0)  
m 

which is identical with the expression (61) obtained in the mean field 
approximation. 
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